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Abstract

A study is conducted to examine the effect of the relative motion between a PCM block and a heated flat plate in the process of close
contact melting of a high Prandtl number phase change material. An analytical model is proposed and experimental results are reported.
Results indicate that the relative velocity between the PCM block and the plate starts to play an important role in the close contact melt-
ing process when Re > 104. Three distinct melting regimes are identified: for Re < 3 · 105, close contact melting is the dominant mode of
heat transfer in the melt layer. The relative motion may reduce the melting time by up to 66% compare to the melting time observed from
a heated surface at rest. For Re > 5 · 105, the thickness of the liquid melt layer is so small (d* < 8 · 10�4) that the melting process is
hindered and abrasion is observed. Finally, for 3 · 105 < Re < 5 · 105, a transition regime bridges the contact melting regime to the abra-
sion regime.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

For nearly three decades, solid–liquid phase change heat
transfer has received increasing research attention in the
open literature [1]. This type of heat transfer finds applica-
tions in the fusion of ice and the solidification of water
[2–4], purification of metals [5], study of geophysical phe-
nomena (fusion of glaciers and volcanic eruptions) [6],
cooling of electronic equipments [7] and thermal control
of space stations and vehicles [8–12]. One of the modes of
heat transfer found in a system that undergoes solid–liquid
phase change is close contact melting. Close contact melt-
ing occurs when a solid melts while being in contact with
a heat source. The liquid generated at the melting front is
squeezed out from under the solid by the pressure main-
tained in the central section of the film by the weight of
the free solid. If the heat source moves relative to the melt-
ing solid, the liquid generated at the melting front is also
0017-9310/$ - see front matter � 2006 Elsevier Ltd. All rights reserved.

doi:10.1016/j.ijheatmasstransfer.2006.05.007

* Corresponding author. Tel.: +1 819 821 8000; fax: +1 819 821 7163.
E-mail address: Marcel.lacroix@usherbrooke.ca (M. Lacroix).
dragged out from under the solid by the action of the mov-
ing heat source.

The problem of close contact melting has been the sub-
ject of a number of investigations related to the fundamen-
tals of heat transfer [6,13–19,28–30], lubrication [1] and
latent heat energy storage [20–22]. Close contact melting
is primarily studied because the heat transferred across
the melt layer separating the heat surface from the solid
phase change material (PCM) is much higher than the heat
transferred by convection, which generally occurs in much
thicker layers of molten material. As a consequence of
the higher heat fluxes, the melting time is considerably
reduced.

In most of the previous studies on close contact melting,
the process by which the melt is squeezed out of the small
gap separating the heat source and the solid was assumed
to be quasi-steady and the heat transfer through the liquid
film was considered to be conduction dominated [1,6,14–
23]. Recent studies suggest however that this last assump-
tion may no longer be valid when a relative motion
between the solid PCM and the heat source is imposed
[24,25].
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Nomenclature

Dimensional variables

C heat capacity (J/kg K)
g acceleration of gravity (m/s2)
h latent heat of fusion (J/kg)
H initial height of the block (m)
k thermal conductivity (W/m K)
L length of the block (m)
n constant determine experimentally
P pressure (Pa)
Q flow rates (m2/s)
S molten height of the block (m)
t time (s)
T temperature (K)
u x velocity component (m/s)
v y velocity component (m/s)
U speed of the liquid in the gap (m/s)
V melting speed (m/s)eV quasi-steady liquid velocity (m/s)
x coordinate (m)
y coordinate (m)

Greek symbols

a thermal diffusivity of melt (m2/s)
d molten layer thickness (m)
DT temperature difference (Tp � Tm) (K)
K effective height of the dragging effect (m)
l dynamic viscosity (N s/m2)
m kinematic viscosity (m2/s)
q density (kg/m3)

Non-dimensional variables

B variable, argument of function F
f1(Ste,Re) function dependent on the Stefan and Rey-

nolds number
f2(Ste) function dependent on the Stefan number
F(B) function dependent on B

Subscripts

eff effective
f liquid
fs liquid solid
m melting point
p plate
s solid
sc subcooled
x in the x direction
z in the z direction

Superscript

* indicates dimensionless quantity

Definitions of non-dimensional variables

Nu Nusselt number q00/(kfDT/Lx)
Pr Prandtl number (m/a)
Re Reynolds number (ULx/m)
Ste Stefan number (CDT/hfs)

Fig. 1. Schematic of the system.
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Although, few studies have examined the effect of the
relative motion between the PCM and the heated source
on close contact melting [26,27], these investigations
focused on the transient thermal behaviour in the early
stages of close contact melting. Conduction was still con-
sidered to be the prevailing mechanism of heat transfer
across the melt layer. Convection was ignored.

The two main objectives of the present study are, first, to
report experimental results of close contact melting of ice
heated from a moving heated flat plate and, second, to pro-
pose a mathematical model that predicts adequately the
melting process. The melting of a high Prandtl number
substance in contact with a moving heated surface is then
studied and the effect of the relative motion is delineated
in terms of the Stefan and Reynolds numbers.

2. Mathematical model

A schematic representation of the physical system is
depicted in Fig. 1. A block of solid PCM of height H,
length Lx and depth Lz is initially at a uniform subcooled
temperature Tm � Tsc and rests on a flat plate. At time
t = 0, the temperature of the flat plate is suddenly raised
to a constant value Tp = Tm + DT and simultaneously a
relative motion between the plate and the PCM is set.
The amplitude of the relative motion is U. Melting is trig-
gered and the solid descends vertically at a speed V while
squeezing the melt out of the thin gap of thickness d
between the solid and the plate.

Six assumptions are made regarding the behaviour of
the physical system:
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(1) The melting process is considered quasi-steady, i.e., at
every point in time the weight of the solid is balanced
by the excess pressure built in the liquid film.

(2) The heat transfer is one-dimensional (function of y

only).
(3) Momentum and pressure variation are dominant in

the direction of the motion of the flat plate, i.e. x-
direction.

(4) The liquid film thickness d is constant along the
length Lx and Lz of the block (this assumption results
from 2). d may, however, vary with time.

(5) The flow in the liquid film remains laminar.
(6) The fluid properties are temperature independent and

are evaluated at the film temperature (Tfilm =
Tm + DT/2).

(7) The temperature of the PCM block is considered con-
stant throughout the melting process.

2.1. Conservation of energy

Subjected to the above assumptions, the energy conser-
vation equation for the melt becomes [18]

v
oT
oy
¼ af

o
2T

oy2
ð1Þ

for which the boundary conditions are T(y = 0) =
Tp = Tm + DT and T(y = d) = Tm. Furthermore, the veloc-
ity component v in Eq. (1) is approximated by the melting
speed V at the melting interface (y = d).

The temperature distribution in the liquid gap is
obtained from the solution of Eq. (1):

T ðyÞ ¼ T m þ DT
fexpð�Vy=afÞ � expð�V d=afÞg

1� expð�V d=afÞ
ð2Þ
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Fig. 2. Temperature profile in the melt layer.
This temperature profile is plotted in Fig. 2. It is seen
that the effect of convection becomes increasingly impor-
tant for (Vd/af) > 0.1. For these cases, the linear tempera-
ture profile assumed in previous models is no longer
valid. Indeed, as the dimensionless parameter Vd/af

increases in magnitude, the mean temperature of the liquid
in the melt gap gets closer to the melting point Tm and, as a
result, the heat flux at the melting front diminishes and so
the melting rate.

In addition, at the solid–liquid interface (y = d), an
energy balance yields

�kf

dT
dy

� �
y¼d

¼ qsV ðhfs þ CsT scÞ ð3Þ

Substitution of Eq. (2) into Eq. (3) provides a first relation
between the molten layer thickness d and the melting
speed V

�qfCf

DT
1� expðV d=afÞ

¼ qsðhfs þ CsT scÞ ð4Þ
2.2. Conservation of momentum

At all times, it is assumed that the pressure in the liquid
gap is related to the weight of the PCM block by

Lz

Z Lx
2

�Lx
2

P ðxÞdx ¼ qsðH � SÞLxLzg ð5Þ

Once again, subjected to the above assumptions, the
momentum conservation equation for the melt may be
expressed as [18]

o2u
oy2
¼ 1

lf

dP
dx

ð6Þ

The boundary conditions for the momentum equation (6)
are u(y = 0) = U and u(y = d) = 0.

The velocity profile for u is found from the solution of
Eq. (6), i.e.,

uðyÞ ¼ 1

2lf

oP
ox

yðy � dÞ þ U 1� y
d

� �
ð7Þ

This solution cannot be used yet because it involves the
unknown pressure gradient oP/ox. The pressure must be
related to the normal force with which the melting block
is pushed downward. The pressure distribution is deter-
mined first by calculating the liquid flow rate

QxðxÞ ¼
Z d

0

uðx; yÞdy ð8Þ

By substituting Eq. (7) into Eq. (8), the liquid flow rate is
found to be

QxðxÞ ¼ �
d3

12lf

dP
dx
þ Ud

2
ð9Þ
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2.3. Conservation of mass

As seen from Fig. 3, a mass balance taken over the entire
melt layer gives the following relation:

VLxLz ¼ eV LxLz þ UKLz ð10Þ
V is the melting speed of the PCM block, U is the ampli-
tude of the relative motion between the plate and the
PCM block, i.e., the velocity of the liquid leaving the melt
gap as a consequence of the dragging effect of the plate
over a height K and eV is the velocity of the liquid leaving
the melt gap as a consequence of the squeezing effect main-
tained by the weight of the PCM. The melting process may
be considered quasi-steady if the velocity eV is used in the
mass conservation equation instead of the total melting
speed V. Rewriting Eq. (10), the relation between the two
velocities is

eV ¼ V � UK
Lx

ð11Þ

Moreover, by invoking the boundary layer theory, the
height K may be expressed as

K
Lx
¼ f1ðSteeff ;ReÞ � f2ðSteeffÞ

Ren ð12Þ

n and f2 (Steeff) are functions to be determined
experimentally.

Finally, the mass conservation equation for the melt is

ou
ox
þ ov

oy
¼ 0 ð13Þ

Integration of this last equation from y = 0 (v = 0) to y = d
ðv ¼ �eV Þ yields

dQxðxÞ
dx

¼ eV ð14Þ

Substituting Eq. (9) into (14), the following differential
relation between the pressure P, the melting speed V, and
the liquid film height d is obtained

d2P
dx2
¼ � 12lf

d3
V � U

f2ðSteeffÞ
Ren

� �
ð15Þ
Fig. 3. Mass conservation in the melt layer.
Using the boundary conditions for the pressure P

(x = ±Lx/2) = 0, the solution of Eq. (15) is found to be

PðxÞ ¼ 3

2

lf

d3
V � U

f2ðSteeffÞ
Ren

� �
ðL2

x � 4x2Þ ð16Þ

Substitution of Eq. (16) into Eq. (5) provides a second rela-
tion between the molten layer thickness d and the melting
speed V

lfLzL3
x

d3
V � U

f2ðSteeffÞ
Ren

� �
¼ qsLxLzðH � SÞg ð17Þ
2.4. Dimensionless equations

Eqs. (4) and (17) are now cast in dimensionless form
using the variables and parameters defined in Table 1

� Steeff

q�
¼ 1� expðV �d�PrfÞ ð18Þ

V � ¼ q�ðH � � S�ÞAd�3 þ f2ðSteeffÞRe1�n ð19Þ

The above dimensionless equations are easily adapted to
the melting of any PCM and for of any geometry. The
dimensionless form also facilitates the comparison of the
melting behaviour of different PCMs. The Prandtl number
Prf characterizes the substance, the Stefan number Steeff,
the relative heating intensity and the Reynolds number
Re, the relative magnitude of the velocity between the plate
and the PCM block. Eqs. (18) and (19) represent a system
of two equations and two unknowns, V* and d*. Merging
both equations yields the following quartic (fourth order)
equation for d*

q�ðH � �S�ÞAPrfd
�4þ f2ðSteeffÞPrf Re1�nd�

� lnð1þSteeff=q
�Þ¼ 0 ð20Þ

The solution is

d� ¼
ffiffiffiffiffiffiffiffiffiffi
F ðBÞ

p
2

128

27

ðlnð1þSteeff=q�ÞÞ3

q�ðH � �S�ÞAPr3
f ðf2ðSteeff ÞRe1�nÞ2

" #1=6

�
ffiffiffiffiffi
27

32

r
Pr3=2

f ðf2ðSteeffÞRe1�nÞ2

ðq�ðH � �S�ÞAÞ1=2ðF ðBÞ � lnð1þSteeff=q�ÞÞ3=2
�1

 !1=2

�1

24 35
ð21Þ

where F ðBÞ ¼ �1

½1þ
ffiffiffiffiffiffi
1þB
p

�1=3 þ �1

½1�
ffiffiffiffiffiffi
1þB
p

�1=3

� �
and B ¼

256
27

q�ðH��S�ÞAðlnð1þSteeff=q
�ÞÞ3

Pr3
f
ðfsðSteeff ÞRe1�nÞ4 .
Table 1
Dimensionless variables and parameters

d* d/Lx

H* H/Lx

S* S/Lx

V* VLx/mf

q* qs/qf

t* mf t=L2
x

A L3
xg=m2

f
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The melting speed V* is then obtained by substituting
the solution (21) back into Eq. (18) or (19). Finally, recall-
ing that dS*/dt* = V* and S*(t* = 0) = 0, the time varying
height of the block is obtained numerically using a fourth
order Runge–Kutta integration scheme.

2.5. Effective Stefan number

The effective Stefan number Steeff introduced in Eq. (12)
takes into account the subcooling of the PCM. The net
effect of subcooling is to slow down the melting process
as some of the heat released by the heated plate is stored
as sensible heat in the solid phase of the PCM block. The
effective Stefan number is defined as

Steeff ¼
CfDT

ðhfs þ CsT scÞ
ð22Þ

which can be rewritten as

Steeff ¼
Ste

ð1þ StescÞ
ð23Þ
Fig. 5. Experimental setup: (a) aluminium disk and DC electric motor and
(b) heating resistances.
3. Experimental setup

In order to study close contact melting of ice with a
moving heated flat plate and to assess the validity of the
above analytical model, an experimental apparatus was
designed and built (Fig. 4). The effect of an infinite moving
flat plate is mimicked with a rotating highly polished alu-
minium disk, 56 cm in diameter, 2.5 cm in thickness and
weighting 11.5 kg (Fig. 5(a)). The disk is attached to a ver-
tical shaft rotated by a DC, variable speed, 1/8 hp electric
motor. The speed of rotation varies from 0 to 1000 rpm
(0–24 m/s, linear velocity). The aluminium disk is heated
by four electrical resistances (Fig. 5(b)) that provide a max-
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Fig. 4. Schematic of the experimental setup.
imum of 6.5 kW at 240 V. The temperature of the disk is
maintained with a temperature controller (series
CN77000) from micromega and with an on/off solid state
relay (series SSRL240) from Omega. An infrared thermo-
couple OS37-10 (J-type, accurate to ±2 K), also from
Omega, is used to measure the surface temperature of the
rotating disk.

During an experiment, a block of sub cooled ice
(Tsc = 22 K), prepared with tap water, 0.03 m wide,
0.03 m deep and 0.076 m high, held in a rectangular duct
made with plexiglass walls, presses against the surface of
the disk under its own weight. A plastic wiper is also used
to remove any excess liquid that could remain on the disk.
The time varying height of the melting ice block is mea-
sured with a ruler, fixed to the transparent wall of the duct,
and with a stop watch.

4. Results and discussion

A series of experiments were conducted for two disk
temperatures of 299 K and 318 K (which correspond to
Stefan numbers Steeff of 0.380 and 0.640 respectively) and
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for different speeds of rotation raging from 80 rpm to
1000 rpm (which correspond to Reynolds numbers ranging
from 5.8 · 104 to 9.3 · 105).

First, the effect of the curvature of the heated surface
(rotating disk) on the melting process was examined (the
linear speed seen by the PCM block resting on a circular
surface is not constant along its length Lz). The results
are reported in Fig. 6(a) and (b) for two melting scenarios.
The error bars represent the area of multiple data measured
under identical conditions. By taking into account the
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Fig. 6. H* � S* versus t*: effect of curvature for two different radii: (a)
Steeff = 0.380 and Re = 5.8 · 104 and (b) Steeff = 0.640 and Re = 1.6 · 105.
experimental uncertainties, it is seen that the measured
melting profiles ((H* � S*) versus t*) recorded at two differ-
ent positions on the rotating disk (radius R = 0.119 m and
R = 0.241 m.) are nearly the same. In both cases, the linear
speeds are identical, i.e., the Reynolds numbers are similar.
Nevertheless, to minimize the effect of curvature of the
heated surface, that is to mimic the motion of an infinite
heated flat plate, all experiments reported here were per-
formed at a radius R = 0.241 m.

Fig. 7 shows the measured time periods needed to melt
87% of the ice block as a function of the Reynolds number
for the two different plate temperatures. Due to the physi-
cal limitations of the experimental setup, it was impossible
to properly measure the complete melting time. As a result,
the last measured melting time was obtained when 87% of
the ice block had melted. Examination of this figure reveals
three distinct melting regimes. For Re < 3 · 105, referred to
as the contact melting regime, the relative motion between
the heated plate and the ice block is small enough so that
heat transfer is dominated by close contact melting. The
melting rate increases with Re and Steeff (Fig. 8(a) and
(b)) while the melting speed V remains nearly constant
throughout the melting process. It is independent of the
time varying weight of the ice block. It also implies that
the melt layer thickness d* is independent of the time vary-
ing weight of the ice block.

In the abrasion regime, i.e. for Re > 5 · 105, the relative
velocity is large enough so that no melt layer is observed
between the heated surface and the ice block. From time
to time, small pieces of ice detach from the PCM block
indicating that the melting process is dominated by abra-
sion. Heat transfer is therefore due to conduction across
the actual contact spots between two moving rough
surfaces and radiation across the gaps. Compared to the
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Fig. 8. H* � S* versus t* in the close contact melting regime for (a)
Steeff = 0.380 and (b) Steeff = 0.640.
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contact melting regime for which the gaps are filled with
melt, the thermal contact resistance is much larger in the
abrasion regime and, as a result, the melting speed slows
down considerably (Fig. 9).

Finally, for 3 · 105 < Re < 5 · 105, a transition zone
bridges the contact melting regime to the abrasion regime.
The dimensionless melting profiles ((H* � S*) versus t*) for
this case are reported in Fig. 10.

Fig. 11(a) and (b) compare the measured and the
predicted melting profiles in the close contact melting
regime for Steeff = 0.38 and Steeff = 0.64 respectively.
The functions in Eq. (12), i.e., n = 0.57 and f2(Steeff) =
0.7 Æ Steeff, were determined from the above experi-
mental results using a trial and error method aimed at
finding the functional forms for n and f2 that provided
the best agreement between the experimental data and
the mathematical model. In spite of the measurement
uncertainties and the simplicity of the model, the agree-
ment between the experimental data and the predictions
is excellent.
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The predicted variation of the Nusselt number NuLx and
melting speed V* as a function of the Reynolds number Re

at the melting interface are depicted in Fig. 12(a) and (b)
respectively. The Nusselt number is defined here as

NuLx ¼
q00

ðkfDT =LxÞ
¼ �
ðdT =dyjy¼dÞ
ðDT =LxÞ

ð24Þ

The melting speed is related to the Nusselt number via the
following expression:

V � ¼ Steeff

q�Prf

NuLx ð25Þ
It is seen that the Nusselt number and the melting speed
increase with the Reynolds number. This behaviour is due
to the fact that the thickness of the melt layer d* diminishes
as Re augments (the drag on the moving surface augments)
(Fig. 13). The relative velocity between the PCM block and
the plate starts to play an important role in the melting
process when Re > 104. Finally, based on the experimental
results and on the analytical predictions, the close contact
melting regime may also be characterized by a melt layer
thickness d* > 8 · 10�4 while the abrasion regime prevails
for d* < 8 · 10�4. These thicknesses are only valid for the
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Fig. 13. d* versus Re for Steeff = 0.380 and 0.640.
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case of a PCM melting on a smooth highly polished heated
flat plate. Further investigations are needed in order to
characterize the effects of the surface roughness on the
melting process.
5. Concluding remarks

A study was conducted to examine the effect of the rel-
ative motion between a high Prandtl number PCM block
and a heated flat plate in the process of close contact
melting. An analytical model, resting on the boundary
layer theory, was proposed and its predictions were com-
pared and validated with experimental data. The main
conclusions of this study are as follows:

• The effect of the relative motion between the PCM block
and the heated plate on close contact melting becomes
perceptible for Re > 104.

• Three different melting regimes from a moving heated
plate are identified: for Re < 3 · 105, close contact melt-
ing is the dominant mode of heat transfer in the melt
layer; for Re > 5 · 105, the thickness of the liquid
melt layer becomes so small that the melting process is
hindered. Abrasion prevails. For 3 · 105 < Re < 5 ·
105, a transition zone bridges the contact melting regime
to the abrasion regime.

• In the close contact melting regime, the melting time
may be reduced by up to 66% compare to the melting
time from an immobile heated plate.

• Close contact melting is the dominant mode of heat
transfer for melt layer thickness d* > 8 · 10�4 while the
abrasion regime prevails for d* < 8 · 10�4.
Acknowledgements

The authors are grateful to the Natural Sciences and
Engineering Research council of Canada and to the Fonds
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